Do we need the WMO Mole Fraction Scales for CO2 and other greenhouse gases?

Pieter Tans

Jena, Germany 7 September 2007

WMO-IAEA 15th Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracer Measurement Techniques Goals: 1. Provide independent assessment of emissions reductions2. Monitor & understand the carbon cycle, improve prognoses

Measurements should be accepted as fully trustworthy, implying complete and prompt disclosure of all results, including data flagged as "bad" *Note 1: Disclosure is not an afterthought. It takes people and resources*

Data should be able to stand up to challenges of its comparability.

Measurements should meet the stated WMO goals for comparability

All reported measurements should be accompanied by defensible uncertainty estimates.

Note 1: Defensible uncertainty estimates require a considerable amount of duplication of actual air samples.

Note 2: Uncertainty includes varying systematic errors that are poorly understood

Some definitions in metrology:

Measurement: Process of experimentally obtaining a quantity value that can reasonably attributed to a quantity

Note: Any measurement is a comparison with a measurement standard

Measurand: Quantity intended to be measured

Note: A measurement includes the collection of a sample and its pretreatment, such as drying.

Measurement result: Set of quantity values attributed to a measurand, together with any other available relevant information Note: In most cases a measurement result has to include an estimate of its uncertainty, taking into account all known contributions, not just a statistical estimate of repeatability.

Measurement error: Measured quantity value minus a reference quantity value

Measurement precision: Closeness of agreement of replicate measurements under specified conditions:

1. repeatability: same operators, same equipment and procedure,

same location, same conditions, over relatively short time

2. reproducibility: different operators, equipment, procedure, location, conditions, and over extended time period.

Comparability: Measurement results are comparable if they are metrologically traceable to the same reference

Traceability: result is related to a reference through a documented unbroken *chain* of calibrations

Sources: VIM3 (2008); De Bièvre, Metrologia, 2008

 \sim

Bureau International des Poids et Mesures Key comparison of CO2 in synthetic air - CCQM K52 (2006) Nominal value: 360 µmol/mol CO2 in N2, O2 mixture.

1:12

		ат	20
		<u>. (µmo</u>	l/mol) .
NMi VSL	(Netherlands)	-0.17	±0.36
Inmetro	(Brazil)	0.82	3.6
NMIA	(Australia)	-0.22	0.70
CEM	(Spain)	-0.29	0.73
NPL	(UK)	0.21	0.44
SMU	(Slovak Rep.)	0.74	1.2
NMIJ	(Japan)	0.20	0.48
CERI	(Japan)	-0.47	0.61
CENAM	(Mexico)	-2.31	2.2
NMI-SA	(South Africa)	0.90	3.9
NIST	(US)	-0.31	0.34
INRiM	(Italy)	0.57	0.90
NPLI	(India)	-6.04	13.6
BAM	(Germany)	-0.22	2.9
VNIM	(Russia)	-0.09	0.7
LNE	(France)	-0.58	1.2
NIM	(PR China)	0.26	1.1
KRISS	(S. Korea)	0.08	0.06

Propagation of WMO Mole Fraction Scale for CO2

Standard deviation of individual cylinder manometric calibrations during each calibration episode.

	Ν	St.Dev.	St.Dev. St.Dev.			
1996	64	(all) ppm 0.12	(300-420) ppm 0.09			
1998	58	0.14	0.13			
2000	55	0.11	0.10			
2001	62	0.09	0.08			
2003	62	0.06	0.06			
2004	48	0.04	0.04			
2006	41	0.03	0.03			

recent history of the WMO scale

Where are we now?

Circulation of CarboEurope ICP Cucumbers

Each participant in the WMO GAW network for greenhouse gases maintains traceability to the WMO mole fraction scale for each gas:

Single, well defined, traceability chain to WMO. Target gases provide information values. Comparisons between labs provide information values.

ALL measurement results include well documented full uncertainty resulting from: Transfer of the calibration scale (not uncertainty of scale itself) Repeatability of the measurement Slow and varying biases that are typically present, e.g. due to air handling Other relevant factors

Ongoing comparisons of actual samples, incl. near-real time disclosure, with other labs for ongoing quality control

Full disclosure to general public within a year

calibrations of 15 WMO Primaries

Comparison of NIES gravimetric standards with WMO-X2005

Cylinder	NIES	ESRL	ESRL		
		NDIR	mano		
		May 05	July 06		
		July 06	·		
30089	350.14	350.21	350.15		
30091	350.02	350.03	350.03		
30092	390.11	390.09	390.10		
30093	390.11	390.09	390.15		
30094	389.03	389.02	389.02		

NIES data courtesy of Yasunori Tohjima

2007 1 19 350

d/du/aaa/rafaaa/ .

RL Global Monitoring Divisio	n - Mozilla Firefox <2	2>										• D ×
<u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmar	ks <u>T</u> ools <u>H</u> elp											0
• 🛶 - 🎅 💿 😭 💿	http://chinook.cmdl.n	oaa.go	v/gmd/d	v/ccg/r	efgas/refga	s.php				~ 0	Go G	
lembers 🗋 WebMail 📄 Conne	ections 📄 Biz Journal	s	martUpo	late	Mktplace							
Greenhouse Gases Trace Gases South Pole Ozone Hole Solar Radiation US Surface Radiation US Surface Radiation							~					
Atmospheric Transport	CO2 CALIE	BRA	TION	SUN	MARY	FOR		(# ca	04969			
Data Information	Filling Code	4										
Observation Sites	DATE	LOC	INST P	RESS	CONC.	S.D.	NUM	AVG	SDEV			
Data Access	2001-12-05	BLD	L3	2000	381.332	0.035						
Anonymous FTP Data	2001-12-14	BLD	L3	2000	381.374	0.030						
	2002-01-18	BLD	L3	2000	381.442	0.007						
	2002-01-22	BLD	L3	2000	381.395	0.058						
	2002-05-10	BLD	L3	2000	381.407	0.007						
	2002-05-13	BLD	L3	2000	381.412	0.010						
	2002-05-20	BLD	L3	2000	396.953	0.008	#					
	2002-07-02	BLD	L3	2000	381.452	0.022						
	2003-04-10	BLD	L3	1650	381.387	0.013						
	2003-04-11	BLD	L3	1650	381.399	0.004						8
	2003-04-14	BLD	L3	1650	381.348	0.038						
	2003-10-16	BLD	L3	1300	381.467	0.063						
	2003-10-17	BLD	L3	1300	381.407	0.020						
	2003-10-20	BLD	L3	1300	381.385	0.013						
	2003-10-22	BLD	L3	1300	381.401	0.004	÷ .					
	2004-11-08	BLD	S5	750	381.371	0.005						
	2004-11-09	BLD	S 5	750	381.375	0.009						
	2004-11-10	BLD	S 5	750	381.364	0.010						
	2005-06-29	BLD	S5	400	381.432	0.020						
	2005-06-30	BLD	S5	400	381.417	0.015						
	20						19 3	381.40	0.03			
	(a) 381.50 (b) 381.45 (c) 381.45 (c) 381.40 (c) 381.40									•		

Some limits of calibration transfer standards

