WMO Meeting, Jena, Germany September, 2009

Linking Isotopologue Specific Measurements to Existing International Mole Fraction Scales

Z. Loh^{1,2}, P. Steele^{1,2}, P. Krummel^{1,2}, M. van der Schoot^{1,2}, D. Etheridge^{1,2}, and D. Spencer^{1,2} ¹Centre for Australian Weather and Climate Research, *CSIRO Marine and Atmospheric Research, Aspendale, Victoria* ²CSIRO Energy Transformed Flagship

How to calibrate?

- Instrument only sensitive to ¹²C¹⁶O¹⁶O (& ¹²CH₄)
- Strictly, can only calibrate to those components
- Historically methods have measured 'total' CO₂
- Use of calibration gases with different isotopic ratios will lead to systematic (albeit small) errors in data
 - Demonstrated in two JGR papers, 2006 & 2009:

Effect of carbon isotopic variations on measured CO₂ abundances in reference gas mixtures

Jee-Yon Lee, 1,2 Hee-Soo Yoo, 1 Kurt Marti, 3 Dong Min Moon, 4 Jin Bok Lee, 4 and Jin Seog $\rm Kim^4$

Theoretical and experimental evaluation of the isotope effect of NDIR analyzer on atmospheric CO₂ measurement

Yasunori Tohjima,¹ Keiichi Katsumata,² Isamu Morino,¹ Hitoshi Mukai,¹ Toshinobu Machida,¹ Isao Akama,³ Taketo Amari,³ and Urumu Tsunogai⁴

Calibration proposal

- Isotopologue = distinct molecular species
- Create primary standards for each measureable isotopologue
- Archive primary data as ¹²C¹⁶O¹⁶O (and ¹²CH₄)
- Create a secondary record that accounts for remaining isotopologues
 - Explicit measurement where feasible (e.g. ¹³C¹⁶O¹⁶O)
 - Assumptions about fractional abundance and biogeochemical cycles
- This secondary record should be comparable with current data
- Why do it this way?
 - Clearer where the uncertainties are
 - As it becomes possible to measure additional isotopologues, these can be accommodated naturally in the record

Calibration strategy #1: isotopically pure gases

Isotopically pure standards

- Isotopically pure standard created in-house
- GC measurement determines CO₂ value
- Assume since isotopically pure material was used, GC numbers are ¹²C numbers
- Calibrate Picarro to the isotopically pure standard
- Check Picarro measurements of other tanks are lower than the known concentrations for 'total CO₂' and 'total CH₄' by the expected amount
 - can be calculated with IRMS measurement of $\delta^{13}\text{C}/\,\delta^{18}\text{O}$ for calibration gas

Calibration strategy #2: partitioning the total CO₂

- Assume GC isotopologue independent
- GC & IRMS: total CO₂ partitioned into three major isotopologues
 - ${}^{12}C^{16}O^{16}O = \alpha;$ ${}^{13}C^{16}O^{16}O = \beta;$ ${}^{12}C^{18}O^{16}O = \gamma;$

$$GC[CO_2] = TOT _CO_2 = \mathbf{K} \approx \alpha + \beta + 2\gamma$$

$$r^{13} \approx {}^{13}C^{16}O^{16}O_{12}C^{16}O^{16}O = \beta \alpha$$

 $r^{18} \approx {}^{12}C^{18}O^{16}O/_{12}C^{16}O^{16}O = {}^{\gamma}/_{\alpha}$

$$\delta^{13}C_{VPDB_CO2} = \left[\frac{r_{S}^{13}}{r_{R}^{13}} - 1\right] \times 10^{3};$$

$$r_R^{13} = r_{VPDB_CO2}^{13} = 0.011237200;$$

$$r_{S}^{13} = r_{R}^{13} [(\delta^{13} C_{VPDB_{-}CO2} \times 10^{-3}) + 1] = \mathcal{E}$$

$$\delta^{18}O_{VPDB_{-}CO2} = \left[\frac{r_{S}^{18}}{r_{R}^{18}} - 1\right] \times 10^{3};$$

$$r_R^{18} = r_{VPDB_CO2}^{18} = 0.002088349;$$

$$r_{S}^{18} = r_{R}^{18} \left[\left(\delta^{18} O_{VPDB_{-}CO2} \times 10^{-3} \right) + 1 \right] = \varphi$$

$$\alpha = \frac{\kappa}{1 + \varepsilon + 2\varphi}; \beta = \frac{\varepsilon \kappa}{1 + \varepsilon + 2\varphi}; 2\gamma = \frac{2\varphi \kappa}{1 + \varepsilon + 2\varphi}$$

LoFlo/Picarro ambient record in an urban environment

Rigorous test – dirty and highly variable environment

- Missing data are periodic calibrations and tank measurements
- Picarro data lower than LoFlo data

Picarro calibration

- Based on the suite of CSIRO GASLAB laboratory standards that are tied to the LoFlo 2b instrument.
- These tanks have been measured at NOAA and are on the WMO07x scale.
- All seven tanks (span 320 460 ppm) were produced from ambient air and are isotopically identical to within 0.5‰
- MAT252 measurements of $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ are used to extract $^{12}\text{CO}_2$ fraction
- Picarro calibrated to ¹²CO₂ fraction.

Picarro calibration to ¹²CO₂ fraction of LoFlo2b laboratory primary suite

 Picarro response function linear over 320 – 460 ppm

- Picarro calibrated to ¹²CO₂ fraction
 - Picarro measurement should be ~1.5% lower than LoFlo measurement

Hourly matched data

Mon Sep 07 01:23:31 2009 loflo2picarro_asp_co2_all_44.ps

Conclusions

• Sound metrology suggests we should calibrate isotopologue specific measurements to an isotopologue specific scale

• Such an approach:

- eliminates systematic errors associated with variable isotopic composition of calibration standards
- requires linkages to current mole fraction scales
- Two complementary strategies have been described
- One strategy has been implemented in an overlap experiment with a LoFlo NDIR instrument

