

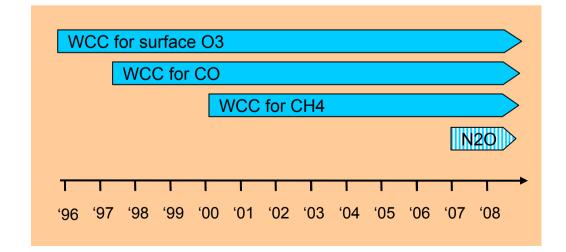
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

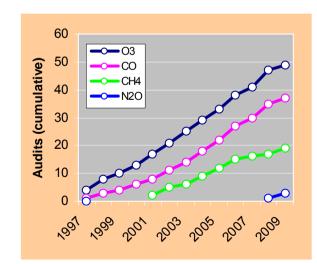
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Materials Science & Technology

World Calibration Centre for Carbon Dioxide (Audits) – Supporting the Quality of the Global Observation System

Jörg Klausen, Christoph Zellweger, Brigitte Buchmann

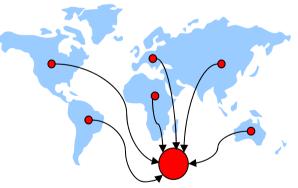

GAW QA/SAC Switzerland GAW WCC-Empa Empa, Dübendorf, Switzerland


Outline

- History and mandate of WCC-CO₂ (Audits)
- System and performance audits
- Traceability of WCC-CO₂ to CCL
- Transfer of the WMO scale to travelling standards
- Evaluation of inter-comparison data
- Conclusions

History of WCC-Empa

- World Calibration Center for Surface Ozone, Carbon Monoxide and Methane
 - established 1995, 1 full-time staff
 - Surface Ozone 1996
 - Carbon Monoxide 1997
 - Methane 2000
 - Nitrous Oxide 2007 (collaboration with WCC-N2O)


See P2, Zellweger et al.

WCC-Empa

- Scope
 - Surface ozone, carbon monoxide,
 - Methane, (nitrous oxide), carbon dioxide (from 2010)

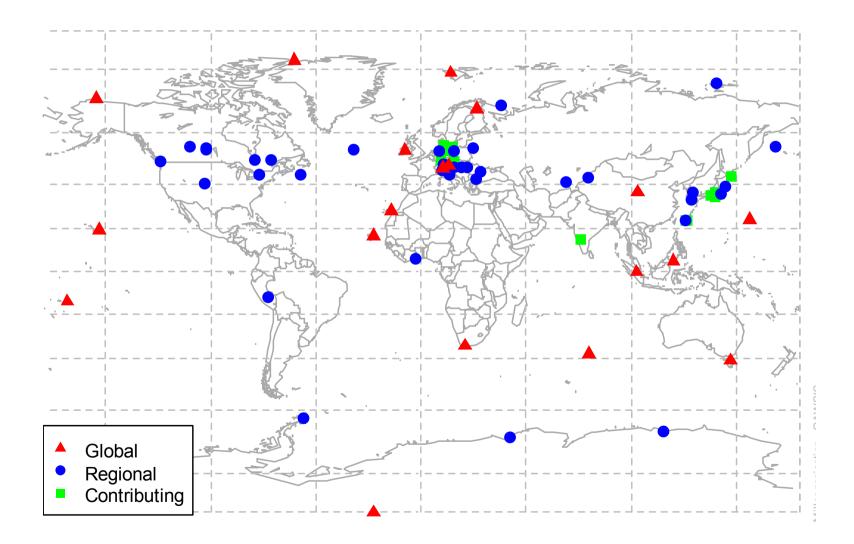
Primary Tasks

- Ensure traceability of measurements at Global GAW stations to designated GAW Reference Standard
- Support stations with regards to instrument and/or measurement problems
- Capacity Building, "1:1"-Training

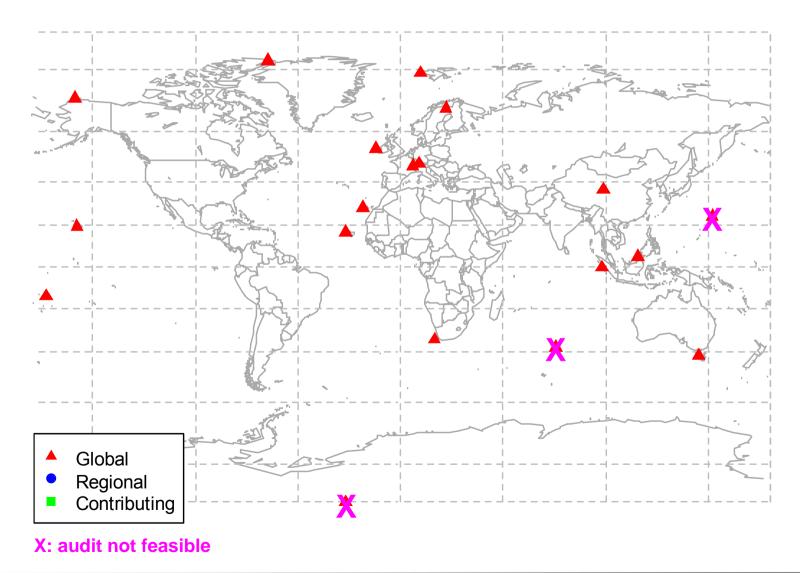
Towards a WCC-CO₂ (Audits)

Stations audited by WCC-Empa have 2001-2008 repeatedly requested that CO_2 be included Funding secured from MeteoSwiss with Feb 2009 in-kind contributons from Empa to expand the scope of WCC-Empa March 2009 Formal proposal for establishment of WCC-CO₂ (Audits) is submitted to WMO and SAG GG April 2009 Proposal reviewed by SAG GG; recommendation is made to JSC OPAG-EPAG May 2009 JSC OPAG-EPAC approves proposal; designates Empa as the WCC-CO₂ (Audits) June 2009 Practical preparations commence

Mandate of WCC-CO₂ (Audits)

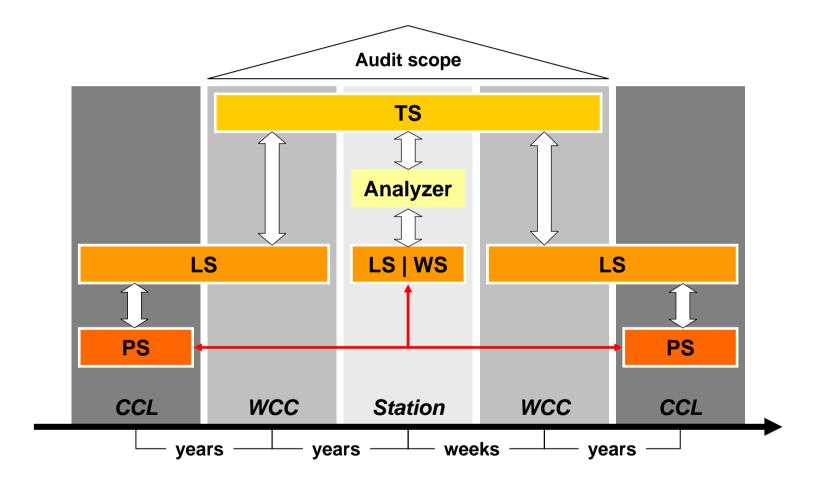

WCC-CO₂ (Audits) performs system and performance audits of continuous CO_2 measurements at Global GAW stations world-wide.

A **system audit** is a check of the overall conformity of a station with the principles of the GAW QA system. It involves an assessment of station siting, infrastructure, organization, operation, etc. The reference for conformity of a station will evolve as the GAW QA system evolves.

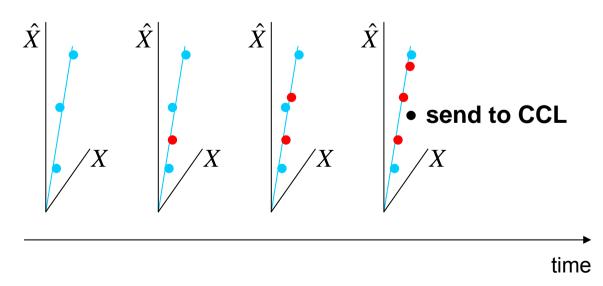

A **performance audit** is a voluntary check for conformity of a measurement where the audit criteria are the DQOs [data quality objectives] for that parameter. In the absence of formal DQOs, an audit will at least involve ensuring the traceability of measurements to the Reference Standard.

[GAW Strategic Plan 2007-2011]

Global Network of Continuous CO₂ Observations



GAW stations in scope of WCC-CO₂


Summary Ranking of Pallas Station System Audit System Audit Aspect Access Adequacy# Facilities Comment Laboratory and office space AUDIT QUESTIONNAIRE FOR SYSTEM Year-round access possible Air Conditioning ATMOSPHERIC TRACE GAS MEASUR Power supply State-of-the-art Internet access emperature changes /ersion Version 1.3-2006 Site Compound nection speed Contributors Date of Audit Auditor J. Klausen (QA/ Approval PARTS OF THIS QUESTIONNAIRE SAG Greenhous)-art General audit information 2 SAG Reactive (1 2 Scope Documentation of station This document 3 gas measureme 4), SO2, NO, NOy, use during aud 5 and/or continuc 6 programme and N₂O. 7 Definitions 8 According to th 9 audit is defined (off site) 10 are the DQOs ded ensuring the tr 11 generally defir 12 (3) Not all data submitted yet (3) For a complete overview of measured QA system. TI... evolves.

Performance Audits and Traceability Chain

Traceability of WCC-CO₂ Lab Standards to CCL

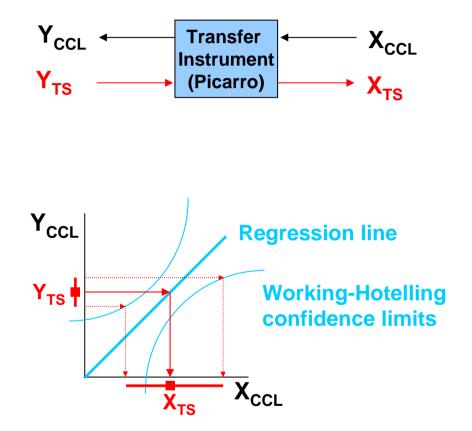
- Currently, 3 NOAA certified standards
- Purchase 4 more in 2009
- Purchase 1-2 more every year
 - Maintain a range of 250 ~ 1000 ppbv CO₂
- Participate in round-robin exercises
- Constantly assess internal consistency of standards
- Return dubious standards to NOAA for re-calibration / re-certification

Isotope Issues

Issues

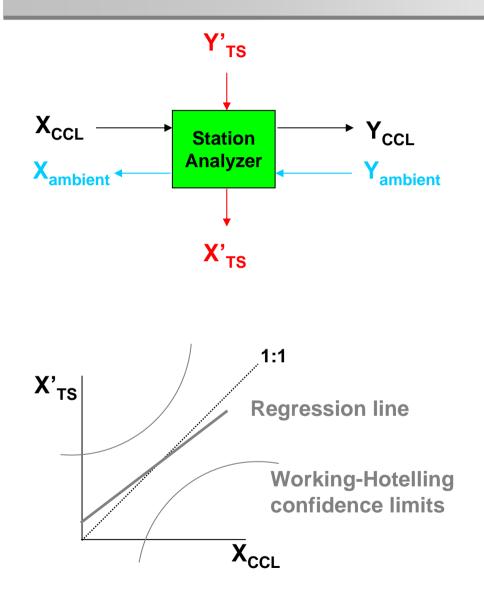
- Picarro CO₂ analyzer sensitive to ¹²C only
- NOAA CO₂ standards certified for total CO₂ and δ¹³C not necessarily the same in all of them
- Transfer of calibration to travelling standards needs correction
- Approach (still to be refined)
 - Characterize δ¹³C in cylinders using TDLS system available at Empa
 See P16, Werner et al.
 - Use LICOR NDIR instrument in addition to Picarro
 - Evaluate inter-comparison data considering type of instrument involved

Uncertainty of CCL Standards – What's in a word?


REAL PROPERTY		R/GN 325 E Boul	der, CO	y 80305 US	A			cichi	a	
Boulder, etc. Boulder, etc. Boulde										
Due	ALIBRAT	10.				s.D.	NUM			
Filling C	DATE 09-06-16 09-06-23	LOC BLD BLD RLD	55 55 55	2000 2000 2000	389.08 389.08 389.06	0.00 0.01 0.01	3	389.08	0.01	dard
Co meas devia aver that preo	oncentration urements for	[CONC each ca igle cali lividual cylinder umol/n regular i	determ in the r nol. Con ntervals	inations, re ange of am hsistency an on a syste	ion date above indard. Standa: Deviation, SDF lative to a set of bient air is tier mong the secon m which separ nme. The accur	d to the WI	MO PIU	The WMO	Primary Stua	ience idards mole thin

- Use of non-ISO terminology (formal issue)
- Certificate makes statements of reproducibility and repeatability
 - Okay for the CCL, but not useful for the user
 - Individual results should be used by the CCL to evaluate structure of residuals (e.g., drift); if residuals are okay, all data should be pooled
 - Statements concerning other aspects of uncertainty are unclear (at least to me ...)
- Present certificates make proper estimates of uncertainty difficult.

A (more) rigorous statement of uncertainties is needed in the certificate.


 $X_{CCL} = nnn.nn \pm ? ppm (k = 2)$

Uncertainty of Travelling Standards (TS)

- Calibration of transfer instrument using CCL standards
 - Fit slope and intercept (fitexy)
 - Construct Working-Hotelling confidence interval for regression line
- (Inverse) prediction of travelling standards
 - Compute statistics of repeated measurements Y_{TS}
 - Invert regression line to get X_{TS}
 - Use confidence bands to obtain confidence limits

Evaluation of Station Analyzer (SA)

- Challenge station analyzer with TS
- Return travelling standards to WCC and check stability
 - Pool TS calibration data
- Evaluate measurements conducted at station
 - Fit slope and intercept (fitexy)
 - Construct Working-Hotelling confidence interval for regression line
 - Evaluate uncertainties determined at station
 - repeatability, drift of analyzer
 - Evaluate bias of analyzer against DQOs
 - Issues with calibration

Conclusions

- System audits
 - offer a 'second opinion' and
 - provide documentation of procedures and design of system
- Performance audits
 - offer an additional means of ensuring traceability to the CCL
 - help unveil and resolve 'issues' with calibration
 - are evaluated using a rigorous statistical approach
- Travelling standards
 - carry a somewhat larger uncertainty than CCL lab standards
 - bring an entire set of 'fresh' standards to a station
- Personal exchange of experience during an audit
 - improves the quality of the observing systems
 - fosters identification of observers with their work
 - gives recognition to the work at the station
- Assessment of uncertainty of observations requires more rigorous statements of uncertainty of CCL standards

Materials Science & Technology

Acknowledgement

Financial support from MeteoSwiss