Overview of comparisons of non-CO₂ trace gas measurements between AGAGE and NOAA at common sites

P.B. Krummel¹, S.A. Montzka², C. Harth³, B.R. Miller², J. Mühle³, E.J. Dlugokencky², P.K. Salameh³, B.D. Hall², S. O'Doherty⁴, L.P. Steele¹, G.S. Dutton², D. Young⁴, J.D. Nance², J.W. Elkins², L. Miller², P.J. Fraser¹, N. Derek¹, R.F. Weiss³, P.G. Simmonds⁴, and R.G. Prinn⁵

¹Centre for Australian Weather & Climate Research/CSIRO Marine & Atmospheric Research, Aspendale, Victoria, Australia ²NOAA Earth System Research Laboratory, Boulder, Colorado, USA ³Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA ⁴School of Chemistry, University of Bristol, Bristol, UK ⁵Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, Massachusetts, USA

Overview

This presentation will focus on comparisons between AGAGE *in situ* and NOAA flask or *in situ* data at five common sites Awareness in this community of non-CO₂ comparison activities carried out as part of the Advanced Global Atmospheric Gases Experiment (AGAGE) program in collaboration with NOAA & other laboratories

Outline: Why do comparisons? How these comparisons evolved Participants/species/sites Comparison techniques/outputs Old summary table and example of planned new formats

Why perform comparisons?

- Gives us the ability to report relationships between different calibration scales in publications or web pages
- Knowing these relationships enables us to merge or combine data sets from different laboratories/scales for joint studies
- For a given species, enables us to compare measurements from different instruments and/or measurement techniques within same measurement program or between two laboratories/networks etc.
- If done regularly, helps in the early identification of problems that may have gone undiagnosed for longer

How these comparisons evolved

- Started with comparisons of CSIRO GASLAB flask data versus AGAGE in situ at Cape Grim, specifically CH₄, then N₂O, CO & H₂
- Extended for GASLAB CO₂ flask data vs *in situ* measurements at Cape Grim
- Next NOAA CH₄ flask data vs AGAGE *in situ* at the 4 (now 5) common sites, results reported at regular AGAGE science meetings
- Soon after, started comparing about 4 halocarbon species at Cape Grim between NOAA and AGAGE ... the number of species soon multiplied ... and comparisons were extended to the rest of the AGAGE stations ...
- As time went on, more panels were added to output, code improved ...
- As more instruments were developed and deployed, more comparisons were performed
- Recently, discussing with Ken Masarie the comparison techniques and future directions

Participants in trace gas comparisons to AGAGE

www.csiro.au

AGAGE (GC-ECD/FID/MRD, GCMS) – AGAGE team, 5 sites, > 34 species

NOAA/ESRL/GMD CCGG flask (GC-FID/ECD) - Ed Dlugokencky, 5 sites, 3 species NOAA/ESRL/GMD HATS flask (GCMS) - Steve Montzka, 4 sites, up to 27 species NOAA/ESRL/GMD HATS flask (GC-ECD) - Jim Butler/David Nance, 4 sites, up to 8 species NOAA/ESRL/GMD HATS CATS *in situ* (GC-ECD) - Geoff Dutton, 1 site (Samoa), 11 species

Uni. of Heidelberg flask (GC-ECD) – Ingeborg Levin , 1 site (Cape Grim), 1 species CSIRO flask (GC-FID/ECD/MRD) – Steele/Langenfelds/Krummel, 1 site (Cape Grim), 4 species NIES flask (GCMS) – Yoko Yokouchi, 1 site (Cape Grim), 12 species

SIO flask – Ben Miller/Martin Vollmer, 1 site (Cape Grim), 5 species UEA flask (GCMS) – David Oram, 1 site (Cape Grim), 24 species

** A lot of data and ALL different data formats!

Comparisons performed approx every 6 months, results made available to all participants, copies archived and form part of the metadata

NOAA species compared to AGAGE in situ records

www.csiro.au

```
31 species in total:
CH_4, N<sub>2</sub>O, SF<sub>6</sub>
CFC-11, CFC-12, CFC-13, CFC-113, CFC-115
HCFC-22, HCFC-141b, HCFC-142b
HFC-23, HFC-125, HFC-134a, HFC-143a, HFC-152a
H-1211, H-1301, H-2402
CH_3CCI_3, CCI_4, CCI_2CCI_2
CH<sub>3</sub>CI, CHCI<sub>3</sub>, CH<sub>3</sub>Br, CH<sub>2</sub>CI<sub>2</sub>, CH<sub>3</sub>I, CHBr<sub>3</sub>, CH<sub>2</sub>Br<sub>2</sub>
C_6H_{6'}OCS
```


AGAGE sites

Comparisons

- Controlled by input files 24 input fields
 - Including data sources; species; smoothing/clipping parameters; begin/end times; match time window etc.
- Matching performed by taking flask sampling time and looking for nearest *in situ* data point within a specified time window
- Full output produces 10 panels:
 - Time series of all data; time series of matched data
 - 1:1 plot; time series of concentration difference
 - conc diff vs flask conc; conc diff vs *in situ* conc
 - Time series of % conc diff; % conc diff vs flask conc
 - conc diff vs matched time diff; conc diff vs abs(matched time diff)
- Also produces 3-panel 'quick-look' plots
- ASCII data files of matched data points produced
- Can plot vertical lines indicating cal/std tank changes for both NOAA & AGAGE; also other options can be customised eg smoothing/clipping
- Code written in IDL; currently working on a major overhaul of the code

Comparison table summary – old style

www.csiro.au

Old format: every species at every site listed; ~20 A4 pages showing statistics for all comparisons; tedious/time consuming to update; not so 'user friendly'

Species (units)	Site	Data Source		Comparison A-B, (A/B-1)*100, and A/B	Comparison 2σ clipped	Comparison Period (Date last updated)	Filename on CD	Notes (on concentration difference plots and/or concentration ratio plots)
		Source A type, detector, scale	Source B type, detector, scale	Conc Diff ± s.d., N Ratio ± s.d. (%), N Ratio ± s.d., N	Conc Diff ± s.d., N Ratio ± s.d. (%), N Ratio ± s.d., N	Begin month/year to End month/year		
CH ₄ (ppb)	MHD	NOAA flask FID NOAA2004	AGAGE insitu FID Tohoku University	1.69±12.96, 527 0.09±0.69, 527 1.0009±0.0069, 527	1.69±5.01, 518 0.09±0.27, 518 1.0009±0.0027, 518	Mar 1994 - Jun 2008 (Oct 2008; AGAGE38)	agmdnoaa_mhd_ch4_all	Excellent agreement.
CH ₄ (ppb)	THD	NOAA flask FID NOAA2004	AGAGE insitu FID Tohoku University	1.93±4.99, 269 0.10±0.27, 269 1.0010±0.0027, 269	1.68±3.85, 260 0.09±0.21, 260 1.0009±0.0021, 260	Apr 2002 - Aug 2008 (Oct 2008; AGAGE38)	agmdnoaa_thd_ch4_all	Excellent agreement.
CH ₄ (ppb)	RPB	NOAA flask FID NOAA2004	AGAGE insitu FID Tohoku University	1.49±7.46, 506 0.08±0.42, 506 1.0008±0.0042, 506	1.57±5.11, 476 0.09±0.29, 476 1.0009±0.0029, 476	Jun 1996 - Aug 2008 (Oct 2008; AGAGE38)	agmdnoaa_rpb_ch4_all	Excellent agreement.
CH ₄ (ppb)	SMO	NOAA flask FID NOAA2004	AGAGE insitu FID Tohoku University	0.13±3.34, 972 0.01±0.19, 972 1.0001±0.0019, 972	0.06±2.40, 940 0.00±0.14, 940 1.0000±0.0014, 940	Aug 1996 - Aug 2008 (Oct 2008; AGAGE38)	agmdnoaa_smo_ch4_all	Excellent agreement.
CH ₄ (ppb)	CGO	NOAA flask FID NOAA2004	AGAGE insitu FID Tohoku University	0.22±1.98, 640 0.01±0.12, 640 1.0001±0.0012, 640	0.18±1.60, 605 0.01±0.09, 605 1.0001±0.0009, 605	Sep 1993 - Jul 2008 (Oct 2008; AGAGE38)	agmdnoaa_cgo_ch4_all	Excellent agreement.
CH ₄ (ppb)	CGA	CSIRO flask FID NOAA04	AGAGE insitu FID Tohoku University	0.69±2.19, 1493 0.04±0.13, 1493 1.0004±0.0013, 1493	0.71±1.87, 1415 0.04±0.11, 1415 1.0004±0.0011, 1415	Aug 1993 - Sep 2008 (Oct 2008; AGAGE38)	agmdcsir_cga_ch4_all	Excellent agreement – small +ve offset. CSIRO data now on NOAA04 scale.
CO (ppb)	CGO	CSIRO flask MRD CSIRO94	AGAGE insitu MRD CSIRO94	1.75±4.46, 1102 3.95±9.11, 1102 1.0395±0.0911, 1102	1.94±3.61, 1028 4.12±7.33, 1028 1.0412±0.0733, 1028	Aug 1993 - Aug 2008 (Oct 2008; AGAGE38)	agmdcsir_cga_co_all	Comparison looking better: AGAGE data for 2003 onwards have had initial correction for non-linearities. Large step change with recent AGAGE tert tank!
H ₂ (ppb)	CGO	CSIRO flask MRD CSIRO94	AGAGE insitu MRD CSIRO94	0.38±7.07, 1386 0.09±1.37, 1386 1.0009±0.0137, 1386	0.24±4.80, 1322 0.05±0.91, 1322 1.0005±0.0091, 1322	Aug 1993 - Aug 2008 (Oct 2008; AGAGE38)	agmdcsir_cga_h2_all	Overall good agreement! AGAGE data have not been corrected for non-linearity and new detector response has not been characterised. Large step change with recent AGAGE tert tank!
N ₂ O (ppb)	MHD	NOAA flask ECD NOAA2000	AGAGE insitu ECD SIO-98	-0.31±0.37, 416 -0.10±0.12, 416 0.9990±0.0012, 416	-0.31±0.32, 394 -0.10±0.10, 394 0.9990±0.0010, 394	May 1997 - Jun 2008 (Oct 2008; AGAGE38)	agmdnoaa_mhd_n2o_all	Good agreement – small trend up until beginning of 2006, then trend down.
N ₂ O (ppb)	THD	NOAA flask ECD NOAA2000	AGAGE insitu ECD SIO-98	-0.12±0.47, 268 -0.04±0.15, 268 0.9996±0.0015, 268	-0.12±0.41, 255 -0.04±0.13, 255 0.9996±0.0013, 255	Apr 2002 - Aug 2008 (Oct 2008; AGAGE38)	agmdnoaa_thd_n2o_all	Good agreement – small -ve constant offset until ~Apr 2005, trend up until Sep 2006, constant offset since.
N ₂ O (ppb)	RPB	NOAA flask	AGAGE insitu	-0.15±0.35, 444	-0.15±0.31, 424	Jul 1997 - Aug 2008	agmdnoaa_rpb_n2o_all	Good agreement – small -ve

Want to simplify presentation of results

Most likely in html, all figures and statistics produced in IDL

Average differences table work in progress

www.csiro.au

Now want to produce summary table of average differences (similar to below) for all species in NOAA/AGAGE comparisons

Species	Scales NOAA AGAGE	Av conc diff (NOAA-AGAGE)	Av % diff (NOAA/AGAGE)	Comparison period	Comments
CH ₄	NOAA-2004 Tohoku Uni	0.95±0.75 ppb	0.05±0.04 %	Aug 1993 to May 2009	Excellent agreement
SF ₆	NOAA-2006 SIO-05	0.03±0.02 ppt	0.52±0.30%	May 2001 to May 2009	Good agreement
CFC-12	NOAA-2001 SIO-05	-8.37±0.32 ppt	-1.55±0.06%	Nov 1994 to Jan 2009	Overall offset, no trends.
HFC-134a	NOAA-1995 SIO-05	-0.19±0.02 ppt	-0.43±0.07%	Nov 2003 to May 2009	Overall good agreement
CH ₃ CI	NOAA-2003 SIO-05	3.30±8.71 ppt	0.69±1.69%	Nov 2003 to May 2009	Differences between sites; problem at Cape Grim

CH₄ summary figure & statistics

www.csiro.au

HFC-134a summary figure & statistics

www.csiro.au

CSIRO

CH₃CI summary figure & statistics

15th WMO/IAEA Meeting of Experts on Carbon Dioxide, other Greenhouse Gases and Related Tracer Measurement Techniques, Sep 2009, Jena, Germany

www.csiro.au

Things to do/future ...

- Rewrite code to make more modular and 'clean-up'
- Automate further to produce site summary plots & proper uncertainty estimates
- Produce HTML summary table and 'drill-down' links, using output from above
- Ongoing activity and development
- Continue to work with Ken Masarie

www.csiro.au

Acknowledgements

All station personnel involved with the collection/filling of flasks and maintenance of *in situ* programs Participants in the comparison exercise, especially the NOAA colleagues who contribute the bulk of the flask data The AGAGE team

