An FTIR analyser for simultaneous high precision measurements of CO_2 , CH_4 , CO, N_2O and $\delta^{13}C$ in CO_2

Comparison with LoFlo and AGAGE measurements at Cape Grim

... and (if there's time) other applications

Atmospheric Chemistry & Spectroscopy David Griffith, Nicholas Deutscher, University of Wollongong, Australia Paul Fraser, Paul Krummel, Paul Steele CSIRO Marine and Atmospheric Research, Australia

Infrared spectrum of clean air

Precision - repeatability

- Determined from Allan Variance measurements
- Confirmed in Cape Grim study
- 1σ repeatability for 10 minute averages:
 - CO_2 0.05 μ mol mol⁻¹
 - CH_4 0.2 nmol mol⁻¹
 - *CO* 0.2 nmol mol⁻¹
 - N_2O 0.06 nmol mol⁻¹
 - $\delta^{13}C$ in CO_2 0.08 ‰
- Accuracy depends on gas standard(s) used

Calibration: stability 110 daily cal.tank measurements at Cape Grim

Calibration: linearity

FTIR vs GasLab calibration values (2002), 14 tanks

Cape Grim intercomparison

FTIR vs LoFlo (CO_2) and AGAGE-GC (CH_4 , CO, N_2O)

- Oct 2008 Feb 2009, 110 days
- Air drawn continuously at 0.5 L min⁻¹ from 70 m tower inlet
 - Parallel to LoFlo and AGAGE inlets
- Continuous real time analysis
 - FTIR measurements are 10 min averages
 - Precision improves with further averaging
 - Comparison values timed/averaged to coincide in time with LoFlo/AGAGE
- Calibration once per day
 - single clean air tank, flask subsamples analysed at GasLAb (awaiting reanalysis)
- Managed over internet to host PC (Windows Remote Desktop)
- Low maintenance, minimal consumables
 - Purge N₂ 0.2 L min⁻¹, MgClO₄, calibration gas
 - No LN₂, use dried sample air + vacuum for Nafion backflush

FTIR at Cape Grim - overview

CO_2 : FTIR vs LoFlo

CO_2 : FTIR vs LoFlo

CH₄: FTIR vs AGAGE (GC)

CH₄: FTIR vs AGAGE (GC)

CO: FTIR vs AGAGE (GC)

CO: FTIR vs AGAGE (GC)

N₂O: FTIR vs AGAGE (GC)

Black Saturday fires, 7 Feb 2009

NOALINSPLIT MODEL Backward trajectories ending at 0900 UTC 07 Feb 09 GDAS Mitroroboical Data

Stories of love, loss and courage from the Victorian bushfires

Some applications - around (some of) the world

Mobile measurements

Transects of the Australian continent

The Ghan

FTIR analyser in luggage van

CH₄ increases in tropical wet season

- 40-50 nmol mol⁻¹ increase in CH₄ toward equator in wet season
- Due to ephemeral wetlands, + latitudinal gradient
- Ephemeral and permanent wetlands approx. equal annual source strength (~0.4 Tg y⁻¹)
- Deutscher et al., JGR submitted 8 Sept 2009

Forest tower profiles: using trace gas and isotopic fractionation profiles to partition C and H₂O exchange

CO_2 and $\delta^{13}C$ - tower profiles 7 heights vs time

CO2 and $\delta^{13}C$ – night time Keeling plots

Water vapour isotopes - FTIR vs Los Gatos (Stephen Parkes, ANSTO)

- FTIR calibration against IRMS water standards (undried air)
 - δ^2 H in H₂O 1 ‰
 - δ^{18} O in H₂O 0.4 ‰

FTIR vs laser

FTIR

Broadband spectrum

- Multiple components
- Save spectra reanalysable
- Thermal source globar
 - Low brightness
 - => best time resoln. ~ 1 sec
- Mid IR, atmospheric pressure
 - Strong absorption
- Wide spectrum band fit

 - Good stability, calib. 1/day

Laser

- Narrowband, single lines
 - Single species or pair (per laser)

 $(\mathbf{\cdot})$

 \bigcirc

 $\overline{\bigcirc}$

 (\cdot)

- Laser source
 - High brightness
 - => high SNR, fast meas.
- Near IR, low pressure (!QCL)
 - Weak absorption
- Narrow band fit
 - less spectral information
 - Drift, more freq. calib.

Net result: similar precision

(;;)

 \bigcirc

 $\overline{\mbox{\boldmath \otimes}}$

Portable

More portable

Summary

• Cost effective 5-in-1 analyser for

CO2, CH4, CO, N2O and $\delta^{13}\text{C-CO}_2$

- Simultaneous and continuous analysis
- High precision
 - Accuracy determined by calibration gases
- Good calibration stability & linearity
 - 1 calibration per day, air standard
- Low maintenance and consumables (no LN₂)
- Low "cost of ownership"
- Manage remotely (internet)
- Applications include:
 - Fixed sites (GAW, ICOS?)
 - Mobile platforms train, ship
 - Tower profiling
 - Micrometeorology and flux measurements
 - Calibration propagation for air standards

<u>Acknowledgements</u>

- Graham Kettlewell software
- Martin Riggenbach construction
- Cape Grim station and staff (John Chris, Jeremy)
- C5IRO/GasLab staff (Marcel Vandershoot, Darren Spencer)
- University of Bremen (the instrument)

University of Wollongong, Aust. Research Council