

Methane and Nitrous Oxide Stable Isotope Ratio measurements on NEEM firn air

Célia J. Sapart (IMAU, Utrecht University),

⁽¹⁾T. Röckmann, ⁽¹⁾R. v.d. Wal, ⁽²⁾T. Blunier, ⁽³⁾T. Sowers, ⁽¹⁾I. Vigano, ⁽¹⁾C. v.d. Veen, ⁽⁵⁾ P. Martinerie, ⁽⁵⁾J. Chappellaz, ⁽⁶⁾ J. Kaiser, ⁽⁴⁾ H. Fischer, ⁽⁴⁾M. Bock,

⁽¹⁾ Institute of Marine and Atmospheric Research (IMAU), University of Utrecht, ⁽²⁾ Centre for Ice and Climate, University of Copenhagen, ⁽³⁾ Departement of geosciences, Penstate University, ⁽⁴⁾ Climate and Environmental Physics, University of Bern, ⁽⁵⁾ Laboratoire de Glaciologie et Géophysique de l'Environnement, (LGGE) St Martin d'Hères, ⁽⁶⁾ University of East Anglia, Norwich (UEA).

Outline

Introduction

Method

Results

• Further research

Introduction

Why are we interested in CH₄ and N₂O?

Conc. increase since preindustrial time

GWP 25 (CH₄) and 300 (N₂O)

Large uncertainties in their source/sink strenghts !

Introduction

Why measuring CH₄ and N₂O stable isotope ratios from firn air?

To better understand the CH₄ and N₂O budget of the last 60 years with high precision isotope measurements.

to compare nm air results with direct atmospheric measurements :

Introduction

Why measuring CH₄ and N₂O stable isotope ratios from firn air?

2 crucial processes occuring in the firn:

Gravitational settling

Diffusion

COMPACTED
SNOW

SNOW

According to wally, Copyright willy, by Eldigio Press Reproduced by permission

• FIRN

Lock-in zone

• Ice

Method

Stable Isotope Ratio measurements

14 firn air bottles were analyzed at least 3 times for their isotope ratio of CH₄ (δ^{13} C and δ D) and of N₂O (δ^{15} N and δ^{18} O) by two high precision Isotope Ratio Mass Spectrometer systems

Results

Results

Mixing ratios (ppb)

Depths (m)

δ¹³C (‰)

[CO₂](ppm)

δD (‰)

Age (AD)

Mixing ratios (ppb)

δ¹⁸Ο (‰)

δ¹⁵N (‰)

Results: CH₄ mixing and isotope ratios vs depths

 δ^{13} C (CH₄) vs depths

Results: N₂O mixing and isotope ratios depths

[N₂O] vs depths

δ¹⁵N (N₂O)

Results: CH₄ mixing and isotope ratios vs CO₂

[CH₄] vs [CO₂]

 $[N_2O]$ vs $[CO_2]$

Inverse modeling

Inverse modelling

 Green function mode => probabilities of having trace gas of a given age at a given depth.

• Model parameters:

- Site temperature
- Accumulation rate
- Width of the convective layer
- Firn density profile
- Firn diffusivity profile

Further research

Further research

 Improving the the inverse modelling and comparing the different NH and SH sites.

• Splicing the firn data with ice core data.

• Measuring Holocene air trapped in NEEM ice core for N_2O and CH_4 mixing and isotope ratios.

Thank you for your attention !

