Atmospheric observation-based global SF₆ emissions: comparison of top-down and bottom-up estimates

 I. Levin¹, T. Naegler¹, R. Heinz¹, D. Osusko¹, E. Cuevas², A. Engel³, J. IImberger¹, R. L. Langenfelds⁴, B. Neininger⁵, C. v. Rohden¹, L. P. Steele⁴, A. Varlagin⁶, R. Weller⁷, D. E. Worthy⁸, S. A. Zimov⁹

¹IUP, Univ. Heidelberg, ²INM Izaña Obs., ³IAU, Univ. Frankfurt, ⁴CMAR, Aspendale, ⁵MetAir AG, Hausen, ⁶IPEE, Moscow, ⁷AWI, Bremerhaven, ⁸Env. Canada, Toronto, ⁹Cherskii Obs.

Sulphur Hexafluoride: SF₆

... is a very stable man-made Greenhouse Gas

Mean atmospheric lifetime: $\approx 3\,000$ years Global Warming Potential: $\approx 23\,000 \times \text{CO}_2$ (100 yr time horizon) $\rightarrow \text{Kyoto - reported}$

Atmospheric mixing ratio today: \approx 7 ppt (10⁻¹² mol/mol)

Sources of SF₆:

- ca. 75% from electrical applications
- Magnesium industry
- adiabatic applications

Sinks of SF₆: only in the Mesosphere > 60 km

- UV Absorption (λ < 130 nm)
- electron reactions

Heidelberg co-operative network of tropospheric SF₆ observations

& stratospheric profiles from Kiruna, Aire sur l'Adour, Teresina

Global long-term trend of SF₆ in the troposphere

Observed tropospheric SF₆ growth rates

Practically no SF_6 sinks:

global mean growth rate \cong global mean SF₆ emissions

Atmospheric observation-inferred global SF₆ emissions

How well do the 2009 bottom-up EDGAR estimates compare to our atmospheric observation-based top-down emissions ?

Atmospheric observation-inferred global SF₆ emissions

Comparison with new global (bottom-up) EDGAR-estimated SF₆ emissions

How do UNFCCC-reported SF₆ emissions compare to our top-down estimate ?

Problem:

Only industrialised countries (Annex I) are required to report their GHG emissions to UNFCCC, these are

Western Europe, Canada, U.S.A., Japan, Australia, New Zealand, Eastern Europe, Russia & Turkey

Therefore, we separate here into Annex I and non-Annex I

which are newly industrialised countries, i.e. *China, India, Brazil, others*

UNFCCC-based and EDGAR estimated Annex I SF₆ emissions

UNFCCC-based and EDGAR Annex I & non-Annex I SF₆ emissions

Are non-Annex I countries really responsible for the major part of global SF₆ emissions today ?

Are non-Annex I countries really responsible for the major part of global SF_6 emissions today ?

This would require much larger SF₆ emissions per electrical power production in non-Annex I than in Annex I countries

The SF₆ north-south gradient principally also provides information on the distribution of emissions

Observed difference between Alert (82°N) and Neumayer (71°S)

Observed and simulated difference between Alert (82°N) and Neumayer (71°S)

Observed and simulated difference between Alert (82°N) and Neumayer (71°S)

Observed and simulated difference between Alert (82°N) and Neumayer (71°S)

 \rightarrow Model transport uncertainties limit constraints on the north-south distribution of emissions, this would also be a concern for high-resolution models !

Summary

Global atmospheric SF₆ mixing ratio has increased from almost zero in the 1970s to almost 7 ppt today

After a decrease of annual global emissions in 1996-1998, SF_6 sources increase again since 1998

Bottom-up estimates by EDGAR compare well with our inferred emissions, however, for some periods, they are significantly different

Annex I reported emissions are surprisingly low and leave a large gap of non-reported emissions

... but model transport uncertainties and the number of observational sites in our network limit emission apportionment to Annex I or non-Annex I countries

Thank you !

DIST

Constant algebra i subici manifi al antica antica

The coarse-resolution GRACE model

Simulating tropospheric SF₆ with EDGARestimated SF₆ emissions

Simulating tropospheric SF₆ with observation-inferred emissions

