Validation of high altitude measurements of CO_2 and CH_4 using the AirCore

Colm Sweeney Anna Karion Tim Newberger Pieter Tans

Questions?: Colm.Sweeney@noaa.gov

AirCore analysis

AirCore Validation

Slug Test: Analysis of CH_4/CO_2 successive slugs of air passing through the AirCore **Evacuation Test:** Analysis of sample bias under typical pressure conditions. **Storage Tests:** Analysis of degradation of CH_{4}/CO_{2} slugs stored in the AirCore **Aircraft Deployment:** Comparison of in situ vertical profiles against multiple methods **Balloon Deployment: High altitude** measurements

Slug Test - Synflex

CH₄ slugs are unaffected by Synflex but CO₂ slugs are significantly effected – bias and significant equilibration time with tube side wall

Slug Test – Restek/Stainless Steel

Restek treatment shows no bias

Evacuation test

Storage and flow distortion test

CH₄

CO₂

Flowing through coil

Taylor Dispersion

Molecular Diffusion $X_{rms} = \sqrt{2Dt}$

$$D_{eff} = \left(D + \frac{a^2 \overline{V}^2}{48D}\right),$$

Modeling flow

In the short-term the flow dispersion should be considered

Modeling storage

In the long-term the diffusion due to storage is the main factor

Slug Storage + flow in coil

 $\overline{D_{co2}} = 0.14 \text{ cm}^2/\text{s}$ at STP

Aircraft deployment

Vertical Resolution

 CH4
 Vertical Resolution
 CO2

 Altitude
 3 h
 9 h
 24h

 100 m
 110 m
 150 m
 220 m

 8000 m
 260 m
 360 m
 510 m

Balloon profile

Balloon profiles show large gradients of CH_4 in the troposphere but more work needs to be done to understand the effect of -30 C temperatures

Horizontal Tape Recorder

Samples can be actively pumped into AirCore

- 400 m of 1/8 (0.010 in) inch = ~7 Kg
- After 24 h (3.2 m diffusion) = 125 independent samples
- At 12 cc/min (2.2 L coil) = 3 h of sampling time

Conclusions

- Laboratory repeatability 0.05 ppm CO₂ and 0.4 ppb CH₄
- Aircraft flights show no bias with standard deviation of 0.3 ppm CO₂, 5 ppb CH₄
- Diffusion and flow dispersion predictable
- Future possibilities to be tested:
 - Higher altitudes and low temperatures
 - With pump for level flight
 - Measurement of other gases
 - Alternate tubing type and configuration