

NOAA SF₆ Measurements from 1987 to 2009

Brad Hall¹, Geoff Dutton², Debbie Mondeel², Ed Dlugokencky¹, David Nance², Pat Lang¹, Gabrielle Petron², James Butler¹, James Elkins¹

¹National Oceanic and Atmospheric Administration, Earth System Research Laboratory ²University of Colorado, Cooperative Institute for Research in Environmental Science

Introduction

We have worked to improve our SF₆ measurements from flasks and *in situ* instruments. A new calibration scale was developed in 2006 and all measurements were updated to the 2006 scale. Here we present:

- 1) Conversion to the 2006 SF₆ calibration scale
- 2) SF₆ results from the Halocarbons (HATS) flask program
- 3) Comparisons among NOAA SF₆ measurement programs
- 4) Implications for estimating SF_6 emissions

Comparisons Between Programs

Improved SF₆ Precision

NOAA Baseline SF₆ Measurements

SF₆ calibration precision was improved in 2006 with the addition of a molecular sieve 5A post-column (185 deg C). By forcing SF_6 to elute prior to N_2O , we increased the SF₆ peak height without increasing baseline noise. SF₆ precision improved from ~1% to ~0.3%. This has improved our ability to link different SF_6 measurement programs to a common scale.

Updating to the 2006 SF₆ Calibration Scale

With better precision, we detected a small difference between the 2006 and 2000 SF_6 calibration scales. A number of air standards were analyzed on the SF_6 "calibration" instrument in order to convert data analyzed on the 2000 scale to the new 2006 scale. Results from a prior instrument (2000-2004) were adjusted to provide a consistent record of calibrations on the 2006 scale from 2000 to present.

Conversion: $Y = 4.8546E-3 * X^2 + 9.3479E-1 * X + 0.2166$ (where Y = 2006 scale, X = 2000 scale).

2000 scale	2006 scale	Difference (ppt)
1.0	1.156	0.156
2.0	2.106	0.106
3.0	3.065	0.065
4.0	4.033	0.033
5.0	5.012	0.012

- Halocarbon (HATS) Flasks: Collected weekly from 11 sites
 - Analyzed on a single instrument
 - All results subject to similar calibration uncertainties
 - and instrument performance

Carbon Cycle (CCGG) Flasks: Collected weekly from over 50 sites

- Analyzed on a single instrument
- All results subject to similar calibration uncertainties and instrument performance
- In situ (HATS): hourly measurements at 6 sites
 - Multiple instruments
 - Calibration uncertainties tend to be smoothed out
 - Instrument performance varies among sites

SF₆ Measurements from 3 NOAA Networks

Global Mean SF₆ from Three Programs (CCGG flask and in situ minus HATS flask)

Differences in global mean SF₆ among programs could be caused by:

Flasks:

1) calibration offsets 2) instrumental issues (ie. non-linear response) 3) sampling issues (not likely)

In situ:

1) calibration offsets (less likely) 2) instrument issues (particularly at tropical stations)

2008 1998 2000 2002 2004 2006 1996

Long-Term Trends

A 20 year record of SF₆ was constructed from the analysis of air collected at Niwot Ridge, Colorado in gas cylinders and stored as a pseudo air archive. We have analyzed archive-quality samples dating to 1987. The trend in northern hemispheric SF₆ inferred from this air archive reveals a nearly linear growth rate of 0.214 ppt yr^{-1} .

All networks show similar growth rates, although some short-term features are not captured by all programs. These differences imply that from 1998 to 2006 the uncertainty in emissions inferred from measured SF_6 is about 15%.

Growth rates (and emissions) over this period may best be estimated by the mean of these three data sets.

Global emissions of SF₆ have increased over the long-term average starting in about 2006. These data also suggest that SF_6 emissions increased slightly from 1999 to 2005. This increase is also seen in the EDGAR emissions estimates, although the timing of the increase appears a little earlier in our data. With many countries making efforts to reduce SF₆ emissions in recent years, it is not clear where the increased emissions (since 2006) are coming from. Improved SF₆ measurements along with modeling efforts will likely be required to infer changes on a regional basis.

What are the prospects for improvement? We have improved precision on one instrument from ~ 0.05 ppt to 0.02-0.03 ppt. It may be possible to achieve this level of improvement on other instruments with modest effort.

History of SF₆ calibration precision

2000-2004: 0.05-0.07 ppt

The SF₆ growth rate from 1987-2005 implies an average SF₆ emission rate of ~5400 tons SF₆ yr⁻¹, which is consistent with other measurement-based estimates during this period. Even though some of the early samples are subject to ~0.06 ppt uncertainty, this corresponds to a small uncertainty (~3%) in the inferred emission rate.

References: Maiss and Brenninkmeijer, Atmospheric SF₆: trends, sources, and prospects, *Environ. Sci. Tech., 32,* 3077-3086 (1998).