
ramces.lsce.ipsl.fr

Introduction

ICOS (Integrated Carbon Observation Svstem; http://www.icos-infrastructure.eu/) is a new European research infrastructure for quantifying and understanding the greenhouse balance of the European continent and adjacent regions. During its preparatory phase, the project will developed to a fully operational level, but with a reduced number of observational sites. A part of the project is the construction of a network for atmospheric measurements. For this purpose, а prototype atmospheric station is under construction (Fig. 1).

Fig. 1 Atmospheric/Ecosystem station design concept

Calibration/drift

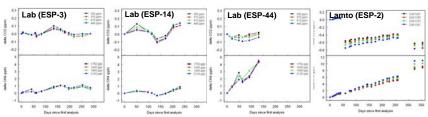
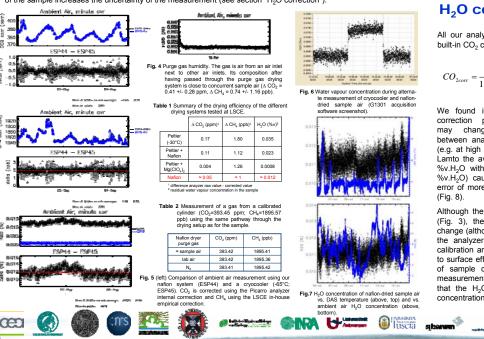



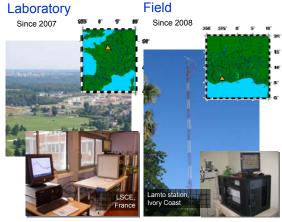
Fig.2 The analyzers were regularly (~ every two weeks) calibrated for CO₂ and CH₄ with four calibration gases. The observed drift for calibration gases is different between instruments.

Drying system

A low-maintenance drying system based on nation dryers and a high pressure dryer (for the purge gas) is being developed at LSCE. The objective is a system that does not need consumables for drying the nation purge gas (e.g. Ma(ClO₄)₂) and that dries efficiently the sample air without modifying its trace gas composition. The preliminary results are encouraging. Such a system would be particularly useful on high-humidity sites (e.g. Lamto station) as high humidity of the sample increases the uncertainty of the measurement (see section "H2O correction").

Performance test of a CRDS instrument for continuous CO₂/CH₄ measurement and its suitability for the **ICOS** atmospheric stations network

¹ LSCE, Gif-sur-Yvette, France ² CEA-DSM/IRFU, Saclay, France ³ EPA, Dublin, Ireland


J. V. Lavrič¹, C. Kaiser¹, C. Vuillemin¹, B. Wastine^{1,3}, M. Schmidt¹, O. Corpace², M. Ramonet¹, P. Ciais¹

www.icos-infrastructure.eu

15th WMO/IAEA Meeting of Experts on Carbon Dioxide. Other Greenhouse Gases, and Related Tracer Measurement Techniques 7-10 September 2009, Jena (Germany)

Tests

Amongst others, the Picarro G1301 CO₂/CH₂/H₂O analyser is being tested at LSCE (Gif-sur-Yvette, France) and in the field (Lamto station, Ivory Coast) to evaluate its suitability for the ICOS atmospheric station prototype. We present a part of the tests, focusing on calibration routines, water vapour correction, and on preliminary results of a very low-maintenance drying system. Further test results can be found in Wastine et al. (2009).

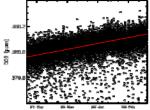
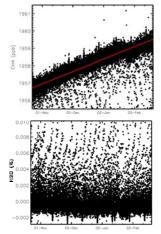



Fig.3 (above and right) Target gas measurements at Lamto station during Fall and Winter 2008/2009. The trend for CO₂ and CH₄ is in line with the trend for the calibration gases (see rightmost plot in Fig. 2) while the H₂O measurement remains table. remains stable

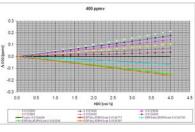
H₂O correction

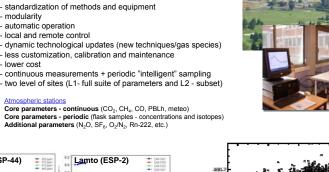
All our analyzers have the same built-in CO2 correction (below):

$$CO_{2corr} = \frac{CO_{2raw}}{1.0 - 0.01244 \times H_2O_2}$$

We found indications that the parameter 0.01244 change through time/ between analyzers, which could (e.g. at high ambient humidity; at Lamto the average is 3.0 to 3.5 $%v.H_2O$ with peaks of up to 4 $%v.H_2O$) cause a measurement error of more than 0.1 ppm CO2

Although the H₂O measurement appears stable (Fig. 3), the absolute value was observed to change (although not significantly) after restarting the analyzer. The absence of a reliable H_2O calibration and longer transition/purge times due to surface effects etc., speak for the continuation of sample drying for long-term high-precision measurements. In this context, we also suggest that the H₂O correction function for very low concentrations should be validated.




Fig.8 Difference between the Picarro-corrected CO, value and the value obtained by a correction functioned determined empirically by measuring the same sample with two Picarro analyzers - one equipped with a cryocooler ("dry") and the other without sample drying ("wet"). The above example is for sample air that has 400ppm CO_{2raw} and varying H_2O concentrations.

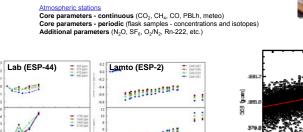

E E

Table 3 Error (in ppm) induced by the water vapour content on the CO₂ measurement

CO ₂	Water vapour content (%v)			
	2 %	1 %	0.1 %	0.01 %
350 ppm	- 8.7	- 4.4	- 0.4	- 0.04
450 ppm	- 11	- 5.5	- 0.6	- 0.06

(from Wastine et al. 2009)

ICOS stations are

- modularity automatic operation local and remote control

lower cost