Primary standard gas mixtures for measurement of ambient level of greenhouse gases

Jeongsoon Lee, Jin Bok Lee, Dong Min Moon, GawngSub Kim, TaeYoung Goo¹, Goan–Young Park¹, and Jin Seog Kim Korea Research Institute of Standards and Science (KRISS) and ¹Korea Meteorological Administration (KMA) Email: <u>leejs@kriss.re.kr</u>; jkim@kriss.re.kr

🌮 Abstract

Greenhouse gases (GHG) have been known as causing materials of the greenhouse effect. Because it is very important to reduce their emission, they has been paid attention since Kyoto protocol to the United Nations Framework Convention on Climate Change. Accurate observation data of ambient GHG are vital for the study of the relationship between GHGs and global warming, but it is not easy to quantify their mixing ratios owing to their globally and temporally tiny variation. For example, mixing ratio of carbon dioxide in the atmosphere, is reported to be growing by +1.7 ppm (parts per million)/year for recent 10 years according to GAW report.

For the purpose of accurate measurement of GHGs, it is essential to have a accurate standard gas mixtures with global scale under well controlled quality system. We have prepared the standard gas mixtures by using a gravimetric method since 2002 and those of carbon dioxide, methane, nitrous oxide, sulphur hexafluoride, and 3 chloro-fluorocarbons are now available. Their specifications including good inter-comparison results are presented. >Keywords: greenhouse gas monitoring, standard gas mixtures, scale harmonization, KGAW station

🌮 Greenhouse primary standard gas preparation in KRISS

substance	Preparation method	Impurity analysis	Range of Certified Values in Reference Materials	Uncertainty (k=2) [U=2*u=2* $\sqrt{u_{aux}^2 + u_{aux}^2 + u_{aux}^2}$]	Dissemination	Validity period /cylinder	ref
C0 ₂	Gravimetry/3 step	CO ₂ , N ₂ , O ₂ , Ar	above 10 μ mol/mol	0.06 at 380 µmol/mol	Air /Air modified	2 year/Al ⁻ , 29.5L	CCQM–K3, 52
CH₄	Gravimetry/4 step	CH ₄ , N ₂ , O ₂ , Ar	above 100 nmol/mol	0.002 at 1.9 µ mol/mol	Air /Air modified	2 year/Al [.] , 29.5L	CCQM-P41
N ₂ O	Gravimetry/5 step	N ₂ 0, N ₂ , O ₂	above 50 nmol/mol	0.2 at 320 nmol/mol	Air /Air modified	2 year/Al [.] , 29.5L	CCQM-K68
SF ₆	Gravimetry/6 step	SF ₆ , N ₂ , O ₂	above 6 pmol/mol for SF ₆	0.06 at 6 pmol/mol for SF ₆	Air /Air modified	2 vear/M: 20 5	CCQM-K15,
NF ₃	Gravimetry/6 step	NF ₃ , N ₂ , O ₂	above 1 nmol/mol for NF ₃ (0.5 pmol/mol after 2011)	0.01 at 1 nmol/mol for NF ₃		2 ycal/Al, 23.JL	Paper preparation
PFCs	Gravimetry/6 step	CF ₄ (C ₂ F ₆), N ₂ , O ₂	above 10 pmol/mol for CF_4 above 100 μ mol/mol for C_2F_6 (50 pmol/mol after 2011)	0.1 at 10 pmol/mol for CF ₄	Air /Air modified	2 year/Al [.] , 29.5L	CCQM-K15, Paper preparation
HFCs	Gravimetry	HFC23, N ₂ , O ₂	above 30 pmol/mol for HFC23 after 2010		Air /Air modified	2 year/Al ⁻ , 29.5L	
CFCs HCFCs	Gravimetry/4~5 step	CFC 11,12,113, N ₂ , O ₂	μ mol/mol~50 pmol/mol for CFC 11,12,113	0.5 at 50 pmol/mol for CFC	Air /Air modified	2 year/Al [.] , 29.5L	
> traceable to SI, uncertainty level with in WMO recommendation, Additionally δ 13C/CO ₂ , δ 13C/CH ₄ can be distributed after 2011, AI: AI Barrel polished (Luxfer or Catrina)							

International comparison

- Coordinating Lab: VSL (Netherland)
- Participants: 9 NMIs (2 WMO)
- # Subatance: CO2 and CH4 ambient level

International comparison CCQM-K52 Carbon dioxide in Synthetic Air

Coordinating Lab: VSL (Netherland)

Participants: 17 NMIs (2 WMO)

International comparison CCQM-K15 Emission level of CF₄ and SF₆

- coordinating Lab: KRISS, participants: 6 NMIs
- Participants: SF₆ & CF₄ hundred μ mol/mol level
- rational
 - * Growth of industry for Semicon, Display: uses many kinds of PFCs during manufacturing process

International comparison CCQM-K68 Nitrous oxide in Synthetic Air

coordinating Lab: KRISS,
 participants: 6 NMIs (2 WMO)
 nominally : N₂O 320 nmol/mol
 scale comparison
 bet. NMIs and WMO

Deviation [nmol/mol]

-6 GMD/

CO2 Round robin test between Japan-Korea

CH₄ reference gas inter-comparison for Asia

Inter-comparison (2001-2002)

	Data of	Conc. (n	mol/mol)
Laboratory and Location	Measurement	Cylinder No.	Cylinder No.
	wiedsurennent	Conc. (n Cylinder No. CPB13002 1811.4 1822.9 1786.4 1812.6 1787.2	CPB13002
JMA, Headquarters, Tokyo	2001.4.23 - 4.24	1811.4	1963.9
CMA, CGAWBO at Mt. Waliguan	2001.7.21 - 7.24	1822.9	1980.5
KMA, Anmyeon-do, Korea	2001.9.3 - 9.5	1786.4	1935.7
JMA, Headquarters, Tokyo	2001.11.4 - 11.5	1812.6	1964.0
CMDL, Boulder	2002.2.13 - 3.12	1787.2	1935.9
- 1.3 % difference between The I	CRISS Scale and	the NOAA S	Icale

Inter-comparison (2005-2006)

	Date of Measurement	Cylinder Number							
I aboratory and Location		CPB	31289	CPB31288					
Eaboratory and Excation		Conc. (ppb)	SD (ppb)	No	Conc. (ppb)	SD (ppb)	No		
JMA, Tokyo, Japan	Jul. 6-7, 2005	1696.0	1.6	10	1876.7	1.5	10		
CMA, Mt. Waliguan, China	Feb., 2006	1670.1	1.9	103	1845.4	2.3	167		
KMA, Anmyeon-do, Korea	Apr.18-27,2006	1695.8	1.5	70	1872.7	1.4	80		
KRISS, Daejeon, Korea	Jun.26-30, 2006	1698.3	1.2	9	1877.1	0.9	8		
JMA, Tokyo, Japan	Aug.21, 2006	1695.7	1.1	10	1877.3	0.7	9		
- The KRISS Scale agree with the NOAA Scale.									

Inter-comparison (2008-2009)

[2009]

		Cylinder Number							
I aboratory and	Data of	CPB13002			CP813003				
Location	Measurement	Concen- tration (ppb)	SD (ppb)	No	Concen- tration (ppb)	SD (ppb)	No	instrument	
JMA Tokyo, Japan	May. 1, 2008	1664.4	1.2	10	1848.4	1.8	10	SHIMADZU GC-14BPF	
KRISS Daejeon, RP Korea	SepNov., 2008	1665.1	0.2	5	1851.2	0.2	5	HP-6890	
KMA Anmyeon-do, RP Korea	OctNov., 2008	1665.6	1.2	12	1851.3	1.4	12	HP-6890	
	Apr. 3-5, 2009	1661.1	0.9	14	1847.0	0.8	14	Agilent-6890N	
Lin Malanan China	Apr. 13-14, 2009	1662.3	0.2	9	1847.2	0.3	9	Picarro G1301	
wit, wanguan, Unina	Apr. 14-16, 2009	1659.3	5.2	10	1846.1	5.1 1.9 10	10	HP-5890	
	Apr. 28-29, 2009	1661.9	2.0	10	1847.5	0.6	10	Agilent-6890N	
CMA Delles China	Apr. 29, 2009	1662.5	0.2	9	1847.3	0.1	9	Picarro G1301	
being, Unina	Apr. 30,2009	1662.2	1.6	12	1847.2	1.8	12	Agilent-6890N	
JMA Tokyo, Japan	Jul. 1, 2009	1664.3	1.1	10	1846.8	1.7	10	SHIMADZU GC-14BPF	

The KRISS Scale agree with the NOAA Scale within about 4 ppb.

KRISS