R.A. Werner¹, M.J. Zeeman¹, W. Eugster¹, R.T.W. Siegwolf², J. Mohn³, N. Buchmann¹

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich ¹ Institute of Plant Sciences, ETH² Lab of Atmospheric Chemistry, PSI³ Laboratory for Air Pollution & Environmental Technology, EMPA, all Switzerland

Measurement of δ^{13} C of atmospheric CO₂ on a routine basis

Introduction:

 $15^{\rm th}$ WMO/IAEA Meeting of Experts on Carbon Dioxide

The δ^{13} C value of CO₂ in canopy air provides information about physiological processes underlying biosphereatmosphere net CO₂ exchange. Since CO₂ from "background air" and respiration processes have different δ^{13} C values, these CO₂ sources can be distinguished, and the coupling of terrestrial and atmospheric carbon fluxes can be addressed. The "Keeling Plot" approach (regression of the δ^{13} C of CO₂ to its inverse [CO₂]) can be used to determine the δ^{13} C value of ecosystem-respired CO₂ with the possibility to partition net CO₂ exchange into assimilation and respiration. This implies the precise and accurate determination of δ^{13} C in CO₂ in large numbers of air samples in order to assess temporal and spatial variability within an ecosystem.

Figure 1: Flow diagramm of the laboratory setup. He (valve 1) is flushing sample air from the ASA (Theis et al. 2004) via valve 2 and 3 to the cryogenic focus trap of the Gasbench II (4). Simultaneously, He flows through the GC column and a diverting valve (5) to the IRMS.

Problem:

Linearity tests with gases with different CO_2 mixing ratios have shown a strong relationship between peak amplitude and corresponding δ -values.

Possible reasons:

- Signal-to-noise ratio
- Maximum linearity deviation of standard pulses tolerated by Finnigan MAT is 0.06 ‰/V
- Small memory-effect in the ASA tubing system ?

Figure 3: Empirical relations between sample CO_2 concentration and trapping time required peak amplitudes that are equal to the IRMS reference gas pulses.

Results:

• The overall precision of $\delta^{13}C$ measurements of CO₂ was determined to be <0.08 ‰ (σ) for samples with standards stored in glass flasks inside an ASA (n=33) and <0.06 ‰ (σ) for directly supplied standards (n=5), over the course of several measurement campaigns between February 2006 and March 2008.

• The $\delta^{13}C$ -values of different mixing ratios of one identical source CO₂ (n=12) with synthetic air (from 300 to 1800 ppm) can be measured with a total precision of 0.04 % (σ) using normalized peak amplitudes.

Literature:

DE Theis et al. (2004): Rapid Comm. Mass Spectrom. 18, 2106ff RA Werner, WA Brand (2001): Rapid Comm. Mass Spectrom. 15, 501ff

Laboratory setup:

- Sampling system ASA (Theis et al., 2004) modified
- Multiple reference gas inlets, sharing the flow path of the sample gas (Fig. 1, 1 + 2). Referencing after Identical-Treatment principle (Werner and Brand, 2001) now possible
- Vents to purge the capillaries, release (over)pressure (Fig. 1, 3 + 4)
- Modified Gasbench II with ConFlo III split allowing undiluted transfer of sample CO₂ to the IRMS
- Homebuilt cryogenic trap (Ni-wire in steel capillary)
- Automated $N_2(I)$ refill system for cold trap controlled by ISL scripts
- Software optimisation (automated adaption of trapping time)

Figure 2: Linearity performance of $\delta^{13}C$ (and $\delta^{18}O$) analysis using the modified Gasbench, expressed as the deviation from the $\delta^{13}C$ (or $\delta^{18}O$) reference value vs. the relative IRMS chromatogram peak amplitude (A).

Solution:

Optimizing sample peak amplitudes close to the peak heights of the reference gas pulses by freezing the same amount of CO_2 for each sample, independent of $[CO_2]$. Implementing an ISL script which adapts trapping time relative to $[CO_2]$.

MJ Zeeman et al. (2008): Rapid Comm. Mass Spectrom. 22, 3883ff Acknowledgements:

G Wehrle, Paul-Scherrer-Institut, Villigen, CH P Plüss, P Flütsch, IPW, ETH Zurich, CH