High precision isotopic analysis of CO₂ in air, using a non-cryogenic GC-IRMS approach

Magnus Wendeberg, Willi A. Brand Max-Planck-Institute of Biogeochemistry , Jena (Germany)

Below is a description of our attempt to use a Finnigan Delta V Plus and a modified Gas -Bench for measuring the isotopic composition of CO_2 in air without the need for liquid nitrogen or a dual inlet system. The goal is to create a highly precise and accurate method with the results comparable to the classical dual inlet techniques and capable of a moderate to high throughput.

Schematics of air injector

The setup is relative simple; it is based around a 10 port Valco valve enabling identical treatment of both standard and sample. The valve is equipped with two 1 ml stainless steel loops, one continuously flushed with standard air and the other with sample air.

As the valve turns, 1 ml aliquots of standard or sample are injected onto a Poraplot Q column (0.53 um, 30 m). The $\rm CO_2$ contained in the air is here separated from the main constituents (nitrogen and oxygen) as well as $\rm N_2O$, and is introduced into the mass spectrometer by using the open split to perform a heart cut. With the alternating injection of standard and sample gas, the $\rm CO_2$ peak from each sample gas injection is flanked by two standard peaks analogous to a Dual Inlet analysis. The normalization of the sample ratios can therefore be done in the similar manner as with the Dual Inlet minimizing the time between assigned and measured ratios and, to some extent, also account for instrument drift.

Although we have been using the least challenging of all samples - a pressurized air tank, the preliminary results from this setup are very promising; For δ^{13} C, the run to run precision is ~ 0.01 % while the results for δ^{18} O have a precision ~ 0.05 %. The precision of the repeatability of the daily averages is better than 0.01 % for δ^{13} C and ~ 0.02 % for δ^{18} O.

Testing for ion source surface chemistry and oxidation state

1000 8¹³C vs. VPDB gas

The consistency of this setup has allowed us to explore several basic properties which can interfere with the accuracy and robustness of the system. Inter alia we tried to assess the "Chemical State" of the ion source on the measurement precision. The surfaces of the ion source and, in particular the presence of the hot tungsten wire (\sim 2300°C) interact with the sample gas entering and can leave residues from chemical reactions that interfere with the next sample peak. By introducing a small background of CO_2 , O_2 or a combination of the two we have been able to compare the results over a few days of repeated analysis. While conclusions cannot be drawn rigorously we see effects that need to be taken care of in a systematic fashion for making this technique as robust as required for the targeted precision level.

Repeated injections of reference and sample

m/z 30 trace, presumably NO _during elution of the CO₂ peak. The first peak is likely to be NO formed on the filament while the CO₂ pressure is high while the second is NO formed from N₂O. Comparing the elution time for N₂O with that of he CO₂ shows a sufficient separation for the CO₂ to the control of the CO₂ through the CO₂ through the control of the CO₂ through the CO₂ through the control of the CO₂ through the CO₂ through

A typical sample run. The sample peaks are flanked on both sides by a reference peak allowing for a normalization similar to the Dual Inlet.

Calculating one flask result

Peak to Peak: (raw)	Averages	Stdev's	δ ¹³ C raw	δ ¹⁸ O raw	δ ¹³ C - sample normalized	δ ¹⁸ O · sample normalized	
sample-air 8 13 C:	-9.037	0.032	-9.515	-2.62		*	Calling of the
ref-air 8 13 C:	-9.490	0.016	-9.024	-2.57	-9.0385	-2.5795	(R _{n-1} + R _{n+1})
sample-air 8 18 O:	-2.553	0.016	-9.486	-2.601		,_	9 +
ref-air 8 18 O:	-2.599	0.033	-9.054	-2.56	-9.073	-2.5915	2
			-9.506	-2.576			The second second
			-8.974	-2.539	-8.989	-2.559	Normalization of sample S _p relative to references R _{mi} , R _{mi} , with the assigne
			-9.494	-2.624			
			-9.034	-2.53	-9.057	-2.5315	
			-9.49	-2.613			
			-9.068	-2.546	-9.1075	-2.5875	15 Ex. (2)
			-9.461	-2.544			
			-9.036	-2.575	-9.0815	-2.6115	(A) -
			-9.478	-2.623	20222	2022	
			-9.067	-2.555	-9.0975	-2.539	78
			-9.491	-2.649			(b) 10//
					δ ¹³ C	δ ¹⁸ O	The state of the
				Average: (normalized)	-9.063	-2.571	
				S tdev: (normalized)	0.040	0.029	MARIE MA

"Day to Day" performance

δ ¹³ C	δ ¹⁸ 0
-9.0771	-2.5648
0.0029	0.0173
-0.0031	0.0792
8 ¹³ C	8 ¹⁸ O
-9.0729	-2.5469
0.0132	0.0155
0.0011	0.0731
δ ¹³ C	8 ¹⁸ O
-9,0783	-2.5543
0.0143	0.0170
-0.0043	0.0657
8 ¹³ C	8 ¹⁸ O
-9.0797	-2,5845
0.0078	0.0898
-0.0057	0.0355
-5.005/	
8 ¹³ C	8 ¹⁸ O
	-9.0771 0.0029 -0.0031 8 ¹³ C -9.0729 0.0132 0.0011 8 ¹³ C -9.0783 0.0143 -0.0043

Ferretti, D. F., D. C. Lowe, R. J. Martin, and G. W. Braitsford (2000), A new gas chromatograph-isotope ratio mass spectrometry technique for high-precision, N2O-fre analysis of 513C and 518O in atmospheric CO2 from small air samples, J. Geophys. R