Re-evaluation of NIES CO Scale

Keiichi Katsumata, Toshinobu Machida, Hiroshi Tanimoto, Hideki Nara, Hitoshi Mukai National Institute for Environmental Studies (NIES), Japan

Introduction

CO-in-air standard gas in high-pressure cylinder drifts upward over time. Drift rates were typically greatest in standards with lower mole fraction. [Novelli et al., JGR, 2003]

→ High CO mole fraction standard (a few ppm level) is considered to be rather stable.

We evaluated ambient level CO standards using ppm level standards.

Conc	lusi	ior	าร

5002.9

CPC002399

VURF CO analyzer has good linearity and reproducibility.

Mole fraction of High mixture gravimetric standards (08Primary) were corrected.

5032.0

- 1. Corrected to account for impurities 27.55 ppb.
- 2. Adjusted to fit the liner function.

NIES employs a new scale; NIES 09 CO scale.

Results

2. Evaluation of impurities in the cylinders

Intercept of a least liner fit of Fig. 2 is -27.55 ppb. This value was regarded as an impurities in 08Primary cylinders.

- Correction of CO mole fraction
 - 1. Corrected to account for impurities 27.55 ppb.
- 2. Adjusted to fit the liner function.
- Corrected values are shown Table 1.

Fig. 3 Enlarged figure of Fig. 2

3. Re-evaluation of NIES 96 CO scale

Intercept of calibration carves are fixed to 0.

CO mole fractions of NIES 09 scale are 5-10 ppb higher than NIES 96 scale in a range between 70 - 300 ppb, and within ± 5 ppb in a range between 300 and 350 ppb.

Fig. 4 Difference between NIES 09 scale and NIES 96 scale

4. Differences between new scale and NOAA scales

CO mole fractions of NIES 09 scale are 10 ppb higher than NOAA scale in a range around 150 ppb, and 12 ppb higher than NOAA scale in a range between 300 and 350 ppb

Fig. 5 Difference between NIES 09 scale and NOAA scale

Round-robin data are provided courtesy of Dr. Zhou Lingxi. Cucumber data are provided courtesy of Dr. Andrew Manning and Dr. Armin Jordan.

